Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from Early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica

Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from Early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica

U-Pb detrital zircon geochronology from the upper Cambrian to Devonian part of the Ellsworth Mountains succession, Antarctica, yields dominant late Mesoproterozoic and late Neoproterozoic-Cambrian age populations that are consistent with a provenance from within Gondwana. Hf isotope compositions reveal a source predominantly within west Gondwana and identify a change in provenance up-stratigraphy that coincides with the change of sedimentation setting from active rift to passive margin, which has been independently determined by stratigraphic, structural, and geochemical arguments. For the Late Cambrian Frasier Ridge Formation, late Mesoproterozoic grains have positive ?Hf values, suggesting derivation from juvenile crust, and late Neoproterozoic-Cambrian grains have ?Hf values greater than -5, consistent with remelting of similar juvenile late Mesoproterozoic crust during the Pan African-Ross orogenies. Provenance during rifting was from proximal sources from within west Gondwana, most likely, southernmost Africa and basement to the Ellsworth-Whit-more Mountains block. At higher stratigraphic levels where deposition occurred along a passive margin, in the early Ordovician Mount Twiss Member and middle Devonian Mount Wyatt Earp Formation, late Neo-proterozoic-Cambrian grains have ?Hf values less than -5; this means that early Meso-proterozoic-Archean crust was remelted to generate these zircons. Provenance was from a more expansive source region within west Gondwana, and probably included the Kaapvaal and Congo cratons of south and west Africa. Isolated outcrops of sedimentary rock of uncertain age at Mount Woollard and the Whitmore Mountains have detrital zircon signatures similar to the Frasier Ridge Formation, suggesting correlation with these Late Cambrian deposits. Sedimentary rock from the Stewart Hills contains some late Mesoproterozoic grains with lower ?Hf values than the previously mentioned samples. This suggests that the Stewart Hills sample has a provenance from within east Gondwana and was possibly deposited on the East Antarctic craton prior to the Ross orogeny and is not part of the displaced Ellsworth-Whitmore Mountains crustal block.

Publication Details

  • Type

    Journal Article
  • Title

    Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from Early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica
  • Year

    2007
  • Author(s)

    Flowerdew, M.J., Millar, I.L., Curtis, M.L., Vaughan, A.P.M., Horstwood, M.S.A., Whitehouse, M.J. and Fanning, C.M.
  • Journal

    Geological Society of America Bulletin
  • Volume

    119
  • Issue

    3-4
  • Page(s)

    275-288
  • URL

    http://dx.doi.org/10.1130/B25891.1
  • People

    • Mike Curtis
    • Michael Flowerdew

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn