Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. An integrated model of clastic injectites and basin floor lobe complexes: implications for stratigraphic trap plays

An integrated model of clastic injectites and basin floor lobe complexes: implications for stratigraphic trap plays

Injectites sourced from base-of-slope and basin-floor parent sandbodies are rarely reported in comparisonto submarine slope channel systems. This study utilizes the well-constrained palaeogeographic and stratigraphic context of three outcrop examples exposed in the Karoo Basin, South Africa, to examine the relationship between abrupt stratigraphic pinchouts in basin-floor lobe complexes, and the presence, controls, and character of injectite architecture. Injectites in this palaeogeographic setting occur where there is: (i) sealing mudstone both above and below the parent sand to create initial overpressure; (ii) an abrupt pinchout of a basin-floor lobe complex through steep confinement to promote compaction drive; (iii) clean, proximal sand beds aiding fluidization; and (iv) a sharp contact between parent sand and host lithology generating a source point for hydraulic fracture and resultant injection of sand. In all outcrop cases, dykes are orientated perpendicular to palaeoslope, and the injected sand propagated laterally beneath the parent sand, paralleling the base to extend beyond its pinchout. Understanding the mechanisms that determine and drive injection is important in improving the prediction of the location and character of clastic injectites in the subsurface. Here, we highlight the close association of basin-floor stratigraphic traps and sub-seismic clastic injectites, and present a model to explain the presence and morphology of injectites in these locations.

Publication Details

  • Type

    Journal Article
  • Title

    An integrated model of clastic injectites and basin floor lobe complexes: implications for stratigraphic trap plays
  • Year

    2017
  • Author(s)

    Cobain, S.L., Hodgson, D.M., Peakall, J. and Shiers, M.N.
  • Journal

    Basin Research
  • Volume

    100
  • Page(s)

    1663-1691
  • URL

    https://doi.org/10.1111/bre.12229
  • People

    • Michelle Shiers

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn