Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Geometry and compartmentalization of fluvial meander-belt reservoirs at the bar-form scale: quantitative insight from outcrop, modern and subsurface analogues

Geometry and compartmentalization of fluvial meander-belt reservoirs at the bar-form scale: quantitative insight from outcrop, modern and subsurface analogues

The preserved deposits of fluvial meander belts typically take the form of patchworks of sand-prone barform elements bordered by genetically related, muddy channel fills. In meander belts that act as hydrocarbon reservoirs, characteristics of sedimentary architecture, including the geometry of point-bar elements and the internal compartmentalization exerted by the presence of mud-prone abandoned channel fills, control the effectiveness of primary and enhanced hydrocarbon recovery. Therefore, a quantitative description of meander-belt architectures is desired to provide constraints to subsurface predictions.

To this end, an examination of sedimentological datasets, enabled by database-assisted analysis, is undertaken. Sixty-four database case studies of modern, ancient outcropping and subsurface fluvial depositional systems are characterized in a quantitative manner, to assess the relative importance of different styles of lithological compartmentalization, and to provide constraints that can be applied to inform predictions of the geometry and connectivity of bar-scale sandbodies in meander-belt reservoirs. The results of this study include: (i) a set of empirical relationships that relate dimensional parameters describing the geometry of point-bar elements, associated channel fills, channel complexes and potentially unswept compartments; (ii) probabilistic descriptions that relate well density to both the proportion of compartments intersected by a well array, and the maximum volume of untapped bar-form compartments.

The resulting predictive tools can be applied to assist reservoir development and production, either directly or through incorporation into reservoir models. For example, it is shown how to use these quantitative constraints to predict the likely volume of point-bar reservoir compartments with potential bypassed hydrocarbons, and to optimize drilling strategies (e.g., whether and how to perform infill drilling or horizontal drilling), by providing a measure of the likely presence, size, spacing, and orientation of bypassed hydrocarbon volumes.

Publication Details

  • Type

    Journal Article
  • Title

    Geometry and compartmentalization of fluvial meander-belt reservoirs at the bar-form scale: quantitative insight from outcrop, modern and subsurface analogues
  • Year

    2017
  • Author(s)

    Colombera, L., Mountney, N.P., Russell, C.E., Shiers, M.N. and McCaffrey, W.D.
  • Journal

    Marine and Petroleum Geology
  • Volume

    82
  • Page(s)

    35-55
  • URL

    https://doi.org/10.1016/j.marpetgeo.2017.01.024
  • People

    • Michelle Shiers

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn