Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Kinematic and thermal constraints on the reactivation of the Outer Hebrides Fault Zone, NW Scotland

Kinematic and thermal constraints on the reactivation of the Outer Hebrides Fault Zone, NW Scotland

The Outer Hebrides Fault Zone is a major easterly dipping reactivated shear zone which displaces Lewisian gneiss of the Laurentian craton, NW Scotland. Despite a number of detailed field studies, the fault zone remains poorly understood with regard to both its age of inception and precise conditions of reactivation. The island of Scalpay in the northern portion of the Outer Hebrides Fault Zone provides exceptional exposures through a variety of reactivated fault rock types and therefore represents an ideal location to investigate fault zone evolution via fluid inclusion studies of syn-tectonic quartz veins. This fluid inclusion study constrains reactivation temperatures more precisely than hitherto possible with top-to-the-NW ductile thrusting occurring at 500 ± 30°C. Subsequent phyllonitization is associated with oblique sinistral top-to-the-NE strike-slip at 230 ± 20°C, followed by a discrete system of top-to-the-NE/SE extensional detachments at 150 ± 20°C. Other recent fluid inclusion studies in the southern portion of the Outer Hebrides Fault Zone constrain phyllonitization associated with top-to-the-E displacement to 370 ± 20°C, with subsequent top-to-the-NE extensional detachments operating at 150-210°C. Thus, late-stage extensional detachment systems record consistent conditions of reactivation along the strike length of the Outer Hebrides Fault Zone. However, our results also clearly emphasize that conditions of earlier fault zone reactivation and phyllonitization were highly heterogeneous between the northern and southern portions, thus suggesting a spatial and temporal variation in the deformation and/or fluid flux system.

Publication Details

  • Type

    Journal Article
  • Title

    Kinematic and thermal constraints on the reactivation of the Outer Hebrides Fault Zone, NW Scotland
  • Year

    2008
  • Author(s)

    Szulc, A.G., Alsop, G.I. and Oliver, G.J.H.
  • Journal

    Geological Magazine
  • Volume

    145
  • Issue

    5
  • Page(s)

    623-636
  • URL

    http://dx.doi.org/10.1017/s0016756808004925
  • People

    • Adam Szulc

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn