Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region

A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region

The long-term evolution of the East Greenland fjord region is investigated using geomorphological and stratigraphical evidence to: (1) assess the nature of landscape modification caused by late Cenozoic ice sheet glaciation; and (2) relate patterns of glacial landscape modification to first-order (i.e. continent-margin scale) topography and geology. Geomorphological and stratigraphical evidence demonstrates evolution of the first-order topography and incision of at least part of the present first-order fjord system by similar to 55 Ma. This hypothesis is tested using apatite (U-Th)/He ages for samples from two bedrock profiles near Kong Oscar Fjord. The thermochronology supports landscape evolution before 55 Ma, followed by relative tectonic stability, because it indicates rapid denudation around the time of rifting that occurred prior to continental breakup (i.e. between similar to 75 and 55 Ma). The nature of landscape modification caused by late Cenozoic glacial erosion appears to have been controlled by first-order topography and geology, with selective ice sheet erosion in areas of high-elevation Caledonian basement and apparently little glacial erosion of low-elevation Mesozoic sedimentary strata. Nevertheless, fjord morphometry demonstrates systematic evolution of the first-order fjord system from confined and overdeepened fjords in Caledonian basement to wider and disproportionately larger fjords in Mesozoic strata. The latter indicates that changes in lithological strength enabled the development of more efficient fjord morphology under full glacial conditions that may have promoted fast ice flow.

Publication Details

  • Type

    Journal Article
  • Title

    A reassessment of the role of ice sheet glaciation in the long-term evolution of the East Greenland fjord region
  • Year

    2008
  • Author(s)

    Swift, D.A., Persano, C., Stuart, F.M., Gallagher, K. and Whitham, A.
  • Journal

    Geomorphology
  • Volume

    97
  • Issue

    1-2
  • Page(s)

    109-125
  • URL

    http://dx.doi.org/10.1016/j.geomorph.2007.02.048
  • People

    • Andrew Whitham

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn