Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone

Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone

Active deformation in the South Caspian region demonstrates the enormous variation in kinematics and structural style generated where a rigid basement block lies within a collision zone. Rigid basement to the South Caspian Basin moves with a westward component relative both to stable Eurasia and Iran, and is beginning to subduct at its northern and western margins. This motion is oblique to the approximately north–south Arabia–Eurasia convergence, and causes oblique shortening to the south and northeast of the South Caspian Basin: thrusting in the Alborz and Kopet Dagh is accompanied by range-parallel strike–slip faults, which are respectively left- and right-lateral. There are also arcuate fold and thrust belts in the region, for two principal reasons. Firstly, weaker regions deform and wrap around the rigid block. This occurs at the curved transition zone between the Alborz and Talysh ranges, where thrust traces are concave towards the foreland. Secondly, a curved fold and thrust belt can link a deformation zone created by movement of the basement block to one created by the regional convergence: west-to-east thrusts in the eastern Talysh represent underthrusting of the South Caspian basement, but pass via an arcuate fan of fold trains into SSW-directed thrusts in the eastern Greater Caucasus, which accommodates part of the Arabia–Eurasia convergence. Each part of the South Caspian region contains one or more detachment levels, which vary dependent on the pre-Pliocene geology. Buckle folds in the South Caspian Basin are detached from older rocks on thick mid-Tertiary mudrocks, whereas thrust sheets in the eastern Greater Caucasus detach on Mesozoic horizons. In the future, the South Caspian basement may be largely eliminated by subduction, leading to a situation similar to Archaean greenstone belts of interthrust mafic and sedimentary slices surrounded by the roots of mountain ranges constructed from continental crust.

Publication Details

  • Type

    Journal Article
  • Title

    Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone
  • Year

    2003
  • Author(s)

    Allen, M.B., Vincent, S.J., Alsop, G.I., Ismail-Zadeh, A.D. and Flecker, R.
  • Journal

    Tectonophysics
  • Volume

    366
  • Issue

    3-4
  • Page(s)

    223-239
  • URL

    http://dx.doi.org/10.1016/S0040-1951(03)00098-2
  • People

    • Stephen Vincent

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn