Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones

Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones

The understanding of sediment provenance and sediment transport routes is a key element in establishing reservoir presence in clastic petroleum systems. Determination of sediment provenance is particularly difficult in structurally complex areas and in sequences that have undergone extensive burial diagenesis. This paper describes a method that overcomes these problems, by combining quantitative heavy mineral analysis with detrital zircon age dating. Quantitative heavy mineral analysis identifies differences in sediment provenance within the sample set, and zircon age data provide diagnostic criteria for the identification of the various source terrains. The high degree of resolution shown by this approach is demonstrated using the North Sea Carboniferous as an example. The Carboniferous of the North Sea has suffered extensive diagenetic modification during its complex burial history, is difficult to image with seismic data, and in some areas, notably the central and northern North Sea, preservation is patchy. The understanding of Carboniferous sand provenance is therefore rudimentary. The Tayport and Firth Coal formations (latest Devonian to Early Carboniferous) of the Outer Moray Firth (central North Sea) were derived from a source area to the north of the British Isles, with sediment transported along the proto-Viking Graben. Some local input is recognised in the Firth Coal Formation. The Westoe Coal Formation (Westphalian B) in the southern North Sea was derived from the southeast, probably from the Saxo-Thuringian Zone of the central European Variscides. The Lower Ketch Member (Westphalian C) in the southern North Sea has a northern provenance, with abundant chrome spinel suggesting derivation from ophiolitic material on the Rinkøbing-Fyn High.

Publication Details

  • Type

    Journal Article
  • Title

    Zircon age and heavy mineral constraints on provenance of North Sea Carboniferous sandstones
  • Year

    2001
  • Author(s)

    Morton, A.C., Hallsworth, C.R. and Claoué-Long, J.C.
  • Journal

    Marine and Petroleum Geology
  • Volume

    18
  • Issue

    3
  • Page(s)

    319-337
  • URL

    http://dx.doi.org/10.1016/S0264-8172(00)00065-9
  • People

    • Andy Morton

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn