Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Heavy Mineral and Zircon Age Constraints on Provenance of Cenozoic Sandstones in the Gulf of Mexico Subsurface

Heavy Mineral and Zircon Age Constraints on Provenance of Cenozoic Sandstones in the Gulf of Mexico Subsurface

Combined heavy mineral analysis and detrital zircon geochronology have enabled us to track detritus supplied by the ancestral river systems draining the North American continent into the deep subsurface of the Gulf of Mexico, in both the coastal plain and the offshore deep water areas. During deposition of the Paleocene–Eocene Wilcox Group, sandstones in the western part of the area are interpreted as the products of the Rosita system derived via paleo-Rio Grande material, with a large component of sediment shed from the Western Cordillera. By contrast, samples from wells further east have high proportions of zircons derived from the Yavapai-Mazatzal Province and are attributed to the Rockdale system with sediment fed predominantly by the paleo-Colorado or paleo-Colorado-Brazos. There is evidence that sediment from the Rosita system occasionally extended into the central Gulf of Mexico, and, likewise, data indicate that the Rockdale system sporadically supplied sediment to the western part of the basin. During the Late Eocene of the central Gulf of Mexico (Yegua Formation) there was a distinct shift in provenance. The earlier Yegua sandstones have a large Grenville zircon component and are most likely to have had a paleo-Mississippi origin, whereas the later Yegua sandstones are dominated by zircons of Western Cordilleran origin, similar to Wilcox sandstones fed by the Rosita system via the paleo-Rio Grande. The switch from paleo-Mississippi to paleo-Rio Grande sourcing implies there was a major reorganisation of drainage patterns during the Late Eocene. Miocene sandstones in the deepwater Gulf of Mexico were principally sourced from the paleo-Mississippi, although the paleo-Red River is inferred to have contributed to the more westerly-located wells.

Publication Details

  • Type

    Journal Article
  • Title

    Heavy Mineral and Zircon Age Constraints on Provenance of Cenozoic Sandstones in the Gulf of Mexico Subsurface
  • Year

    2024
  • Author(s)

    Morton, A.C., Strickler, M.E. and Fanning, C.M.
  • Journal

    Minerals
  • Volume

    14
  • Issue

    8
  • URL

    https://doi.org/10.3390/min14080779
  • People

    • Andy Morton

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn