Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Paratethys pacing of the Messinian Salinity Crisis: Low salinity waters contributing to gypsum precipitation?

Paratethys pacing of the Messinian Salinity Crisis: Low salinity waters contributing to gypsum precipitation?

During the so-called Messinian Salinity Crisis (MSC: 5.97-5.33 Myr ago), reduced exchange with the Atlantic Ocean caused the Mediterranean to develop into a “saline giant” wherein ∼1 million km3 of evaporites (gypsum and halite) were deposited. Despite decades of research it is still poorly understood exactly how and where in the water column these evaporites formed. Gypsum formation commonly requires enhanced dry conditions (evaporation exceeding precipitation), but recent studies also suggested major freshwater inputs into the Mediterranean during MSC-gypsum formation. Here we use strontium isotope ratios of ostracods to show that low-saline water from the Paratethys Seas actually contributed to the precipitation of Mediterranean evaporites. This apparent paradox urges for an alternative mechanism underlying gypsum precipitation. We propose that Paratethys inflow would enhance stratification in the Mediterranean and result in a low-salinity surface-water layer with high Ca/Cl and SO4/Cl ratios. We show that evaporation of this surface water can become saturated in gypsum at a salinity of ∼40, in line with salinities reported from fluid inclusions in MSC evaporites.

Publication Details

  • Type

    Journal Article
  • Title

    Paratethys pacing of the Messinian Salinity Crisis: Low salinity waters contributing to gypsum precipitation?
  • Year

    2020
  • Author(s)

    Grothe, A., Andreetto, F., Reichart, G.-J., Wolthers, M., van Baak, C.G.C., Vasiliev, J., Stoica, M., Sangiorgi, F., Middelburg, J.J., Davies, G.R. and Krijgsman, W.
  • Journal

    Earth and Planetary Science Letters
  • Volume

    532
  • Page(s)

    116029
  • URL

    https://doi.org/10.1016/j.epsl.2019.116029

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn