Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Heavy-Mineral Assemblages In Sandstone Intrusions: Panoche Giant Injection Complex, California, U.S.A

Heavy-Mineral Assemblages In Sandstone Intrusions: Panoche Giant Injection Complex, California, U.S.A

Excellent exposure from part of the Panoche Giant Injection Complex in the San Joaquin Valley is used to examine provenance characteristics of sandstone intrusions with respect to two parent sandstone units that are known to feed the sand-injection complex. The succession is part of the upper Mesozoic to lower Tertiary Great Valley Group, and was deposited in a deepwater part of an evolving deep-water forearc basin. The section examined is mudstone-dominated, and the sand injection is constrained to have occurred in the Danian. Sandstones in the Dosados Member (Moreno Fm) are identified as the main parent unit on the basis of total heavy-mineral-assemblage compositions and varietal studies of selected minerals (tourmaline, garnet, titanite, apatite, and zircon). Fluidized sand is emplaced in turbulent flow conditions creating high-velocity inter-grain collisions. Evidence of comminution and diminution of minerals that are less hard than quartz is documented using indices for the relative hardness (TAH) and durability (TAD) of heavy minerals. Preferential settling of high-density zircon relative to lower-density tourmaline produces density-controlled variations of zircon:tourmaline upward through the injection complex. Heavy-mineral dissolution occurred in the most permeable sandstone intrusions and is believed to record the effects of mid-Eocene deep weathering, when subtropical climate prevailed in the study area. Detrital heavy-mineral assemblages, which are dominated by titanite and garnet, record erosion of the Sierran metamorphic terrane with mafic and alkaline plutonic rocks. Zircon with U/Pb ages of c. 140–160 Ma and c. 90–110 Ma, consistent with earlier independent analyses, record erosion of Sierran granitoids. On the paleo-seafloor, enrichment of Ca-amphibole and epidote is indicative of Sierran provenance concurrent with sand extrusion. The presence of Na-amphibole in the Uhalde Sandstone supports earlier work that suggested sediment input from obducted seafloor to the west.

Publication Details

  • Type

    Journal Article
  • Title

    Heavy-Mineral Assemblages In Sandstone Intrusions: Panoche Giant Injection Complex, California, U.S.A
  • Year

    2017
  • Author(s)

    Hurst, A., Morton, A.C., Scott, A., Vigorito, M. and Frei, D.
  • Journal

    Journal of Sedimentary Research
  • Volume

    87
  • Issue

    4
  • Page(s)

    388-405
  • URL

    http://jsedres.sepmonline.org/content/87/4/388.abstract
  • People

    • Andy Morton

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn