Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions: Reassessment of processes of formation

Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions: Reassessment of processes of formation

This paper reassesses published interpretation that beef and cone-in-cone (B-CIC) fibrous calcite cements were precipitated contemporaneously just below the sea floor in unconsolidated sediment, in limestones associated with the end-Permian (P/T) and end-Triassic (T/J) mass extinctions. That interpretation introduced the concept of a sub-seafloor carbonate factory associated with ocean acidification by raised carbon dioxide driven by volcanic eruption, coinciding with mass extinction. However, our new fieldwork and petrographic analysis, with literature comparison, reveals several problems with this concept. Two key points based on evidence in the T/J transition of the UK are: (1) that B-CIC calcite deposits form thin scattered layers and lenses at several horizons, not a distinct deposit associated with volcanic activity; and (2) B-CIC calcite is more common in Early Jurassic sediments after the extinction and after the end of the Central Atlantic Magmatic Province volcanism proposed to have supplied the carbon dioxide required. Our samples from Late Triassic, Early Jurassic and Early Cretaceous limestones in southern UK show that B-CIC calcite occurs in both marine and non-marine sediments, therefore ocean processes are not mandatory for its formation. There is no proof that fibrous calcite was formed before lithification, but our Early Jurassic samples do prove fibrous calcite formed after compaction, thus interpretation of crystal growth in unconsolidated sediment is problematic. Furthermore, B-CIC crystals mostly grew both upwards and downwards equally, contradicting the interpretation of the novel carbonate factory that they grew preferentially upwards in soft sediment. Finally, Early Jurassic and Early Cretaceous examples are not associated with mass extinction. Three further key points derived from the literature include: (1) B-CIC calcite is widespread geographically and stratigraphically, not clustered around mass extinctions or the Paleocene–Eocene Thermal Maximum (PETM) event; (2) isotope signatures suggest B-CIC calcite formed under high pressure in burial at 70–120 °C, incompatible with interpretation of formation of B-CIC calcite at the redox boundary below the ocean floor; and (3) B-CIC calcite reported in P/T boundary microbialites in one site in Iran is the only occurrence known despite extensive published studies of similar shallow marine settings, demonstrating its formation is localized to the Iran site. Based on the above evidence, our opinion is that B-CIC calcite is best explained as a later diagenetic feature unrelated to rapid Earth-surface environmental change associated with mass extinctions; thus a novel carbonate factory is highly unlikely.

Publication Details

  • Type

    Journal Article
  • Title

    Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions: Reassessment of processes of formation
  • Year

    2016
  • Author(s)

    Kershaw, S. and Guo, L.
  • Journal

    Journal of Palaeogeography
  • Volume

    5
  • Issue

    1
  • Page(s)

    28-42
  • URL

    https://doi.org/10.1016/j.jop.2015.11.003

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn