Skip to main content
CASP Visit CASP website

Main

  • About Us
    • How We Can Help
    • A Bit of History
    • Our Status
    • People
    • Jobs
    • SEM Facility
    • Contact Us
    • News
    • Preventing Harm in Research and Innovation
  • Products
    • Geological Carbon Storage Research
    • Regional Research
    • Reports
    • Data Packages
    • Geological Collections and Data
  • Charity and Education
    • Publications
    • Meetings
    • The Robert Scott Research Fund
    • The Andrew Whitham CASP Fieldwork Awards
    • Outreach
  • Interactive Map
    • Arctic Region
    • China Region
    • East Africa Region
    • North Africa and Middle East Region
    • North Atlantic Region
    • Russia Region
    • South Atlantic Region
    • Southeast Europe to West Central Asia Region
  1. Home
  2. Publications
  3. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation

Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation

New field data demonstrate that during the Late Ordovician (Hirnantian) glaciation, an ice sheet expanding northwestwards over the Anti-Atlas range reached into the southernMeseta of northernMorocco. Its growth to a glacial maximum position resulted in extensive subglacial erosion and deformation including the development of soft-sediment striated surfaces and streamlined subglacial bedforms preserved between the High Atlas of Marrakech and Rehamna. These features imply that this ice mass extended >200 km further than previously thought, and increase its size by at least ca. 190, 000 km2 (comparable in area to the UK). Correlation between a measured section in the High Atlas of Marrakech and that of the southern Meseta identifies sedimentary evolution within an ice-contact system common to both. These findings imply that the West African Craton and northern Morocco were in full glaciological communication during the latest Ordovician. Palaeogeographic reconstruction shows that beyond the ice sheet, south and southeastward palaeoslopes persisted on the shelf. A palaeohigh beyond the main ice sheet was a major source for sand, feeding delta systems that grew along the shelf as far as the shelf break. This palaeohigh probably formed as a result of rift shoulder uplift and supported a satellite ice mass. In the eastern Meseta, a thick (350 m) underflow-dominated deep-marine fan was fed both from this shelf delta system and from glaciogenic debris derived fromthe main ice sheet. The occurrence of this unexpected deep-marine area in northernMorocco implies that continued northward advance of the ice sheet was hampered by a dramatic break in bathymetry. Two depositional units are recognised across the Meseta, containing four distinct sedimentary cycles, each recognised as a glacioeustatic response to thewaxing and waning of icemasses elsewhere in West Gondwana.

Publication Details

  • Type

    Journal Article
  • Title

    Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation
  • Year

    2007
  • Author(s)

    Le Heron, D.P., Ghienne, J.-F., El Houicha, M., Khoukhi, Y. and Rubino, J.-L.
  • Journal

    Palaeogeography, Palaeoclimatology, Palaeoecology
  • Volume

    245
  • Issue

    1-2
  • Page(s)

    200-226
  • URL

    http://dx.doi.org/10.1016/j.palaeo.2006.02.031

Charity and Education

  • Publications
  • Meetings
  • The Robert Scott Research Fund
  • The Andrew Whitham CASP Fieldwork Awards
    • 2025 Fieldwork Award Winners
    • 2024 Fieldwork Award Winners
    • 2023 Fieldwork Award Winner
    • 2022 Fieldwork Award Winners
    • 2021 Fieldwork Award Winners
    • 2020 Fieldwork Award Winners
    • 2019 Fieldwork Award Winners
    • 2018 Fieldwork Award Winners
    • 2017 Fieldwork Award Winners
  • Outreach
  • © CASP A Not-For-Profit Organisation
  • Charity No. 298729
  • Privacy
  • Cookies
  • Contact Us
  • Jobs
  • Twitter
  • LinkedIn